QUÍMICA
PRÁCTICA

        por Bobquim
índice
General
Procesos Químicos
Laboratorio
Problemas
Análisis Cualitativo
Análisis Cuantitativo
Encuestas-Test
Fabric.material Laboratorio
Fabric.Equipos
Noticias
Enlaces afines
Enlaces Química
Sobre El Autor
Análisis Químico Cuantitativo:
Problemas de Química analítica resueltos 2

Problemas resueltos de Química analítica. PQA 2.50.

2.50. Para analizar una muestra de aspirina se pesa 0.3470 g de componentes triturados y se tratan con 50.0 ml de sosa 0.1155 M, calentando a ebullición durante 10 minutos. A continuación el exceso de sosa se valora con 11.5 ml HCl de una solución 0.2100 M 

¿Cuál es la riqueza de la muestra en á. acetilsalicílico (En adelante usar H2Ac)?

Reacción: CH3COO-C6H4-COOH + 2 OH- --> HO-C6H4-COO- + CH3-COO-

De la reacción se deduce que:

(mmol OH-tot) = 2 * mmol H2Ac/Pm H2Ac + Vclo * Mclo

50.0 * 0.1155 = 2 * mg H2Ac/180 + 11.5 * 0.2100

mg H2Ac = 303 mg

% H2Ac = 0.303 * 100/0.347 = 87.3 %

Problemas resueltos de Química analítica. PQA 2.49.

2.49. Una muestra de 7.000 g de vinagre se diluye con agua hasta 50.0 ml. A continuación se trata con 13.5 ml de NaOH 0.505 M y se valora por retroceso con HCl 0.605 M, necesitándose 25 ml para alcanzar el punto final de la fenolftleína. a) Cual es la acidez del vinagre expresada como porcentaje de á. acético? b) Suponiendo que éste es el único ácido presente en la muestra ¿ Cuál sería el pH de la disolución en el punto de equivalencia de la valoración? 
(Usar Ac como abreviatura del radical CH3-COO-)

a) Reacciones:

HAc + OH- --> Ac- + H2O
H+ + (OH-exceso) -->H2O

Por tanto:

(mmol OHtot) = mmolHAC + (mmol OH-exceso)
mmol H+ = (mmol OH-exceso)
Vsosa * Msosa = mg HAc/Pm HAc + Vclo * Mclo
13.5 * 0.505 = mg HAc/60 + 2.5 * 0.605
mg HAc = 318 mg

% HAc = 0.318 * 100/7.0000 = 4.5 %

b) En el punto de equivalencia se habrá valorado todo el exceso de OH- quedando en la disolución el anión Ac-. Para alcanzar dicho punto se le añaden a los 50 ml iniciales un volumen de V2 = 13.5 + 2.5 = 16 ml. La disolución contendrá:

mmol Ac- =318/60 = 5.3 mmol ó 5.3/66 = 0.080 M y su pH será:

[OH-] =raiz(0.080 * 10^-9.2) =  7.1 * 10 ^-6 M y de aquí:

pH = 8.9

Problemas resueltos de Química analítica. PQA 2.48.

2.48. Una muestra de oleum (ácido sulfúrico fumante), que consiste en una disolución de SO3 en ácido sulfúrico, gastó 27.5 ml de NaOH 0.2500 en su valoración. Si la masa de la muestra analizada era de 0.3140 g, calcular a) la riqueza en SO3 y en H2SO4 de la muestra y b) el volumen de NaOH que se gastaría en valorar 0.5000 g de un ácido sulfúrico fumante que contiene un 10% de SO3.


a) El trióxido de azufre se transforma en
á. sulfúrico en presencia de agua, y se valora junto con el ácido que contiene inicialmente la muestra:

SO3 + H2O --> H2SO4

Reacción de valoración:

H2SO4 + 2OH- --> SO4(2-) + 2H2O

Para calcular la cantidad de ácido sulfúrico valorada:

mmol NaOH = 2 mmol H2SO4

27.5 * 0.2500/2 = 3.4 mmol H2SO4

3.4 * 98 = 333 mg H2SO4

% H2SO4 = 333 * 100/314 = 106 %

El 6% corresponde al ácido formado a partir del SO3 y agua.

Como SO3 <>H2SO4

mg H2SO4(muestra) + mg SO3 = 314 mg

mgH2SO4(SO3) = mg SO3 * Pm H2SO4/Pm SO3

mg H2SO4(muestra) + mgH2SO4(SO3) = 333 mg

333 mg = 314 - mg SO3 + mg SO3 * 98/80

mg SO3 = 84.4 mg

% SO3 = 26.9 %

mg H2SO4(muestra) = 314 -84.4 = 230 mg

% H2SO4(muestra) = 73.2 %


b) El porcentaje de SO3 calculado corresponde a:

0.10 * 0.5000 mg SO3

proporcionando un á. sulfúrico de:

mg H2SO4(SO3) = 50.0 * 98/80 = 61.3 mg

H2SO4 valorado es: 500 - 50.0 + 61.3 = 551 mg H2SO4
luego * 0.2500 = 2 * 551/98 de donde V = 45.0 mnl NaOH

Problemas resueltos de Química analítica. PQA 2.47.

2.47. Se disuelve una muestra impura de 0.6580 g de tartrato ácido de potasio de fórmula empírica KHC4H4O6 y Pm 188.1, en 45.0 ml de una disolución de sosa 0.0987 M, cuyo exceso consume 6.4 ml de á. sulfúrico 0.1100 M en su valoración por retroceso. Calcular: a) la pureza de la muestra expresada como porcentaje de sal y b) el porcentaje de potasio en dicha muestra.

a) Disociación de la sal:

KHC4H4O6 --> K+ + HC4H4O6-

Reacción con la base:

HC4H4O6- + OH- --> C4H4O6(2-)

Valoración por retroceso:

H2SO4 + 2OH --> SO4(2-) + 2H2O

mmol OH- = mmol HC4H4O6- + 2 mmol H2SO4

45.0 * 00987 = mg KHC4H4O6/Pm + 2 * ( 6.4 * 0.1100)

mg KHC4H4O6 = 570 mg

% KHC4H4O6 = 0.570 * 100/0.650 = 86.6 %

El porcentaje de potasio (Pat = 39.1) será:

(570 * 39.1 * 100)/(188.1 * 658) = 18.0 %


Problemas resueltos de Química analítica. PQA 2.46.

2.46. Se transformó el azufre de una muestra de 0.2500 g de mineral en trióxido de azufre, el cual fue absorbido sobre 40.0 ml de una disolución de NaOH 0.1250 M. El exceso de sosa consumió para su valoración 22.0 ml de una disolución de á. clorhídrico equivalente a otra de 0.0096 g/ml de Na2CO3. Calcular el porcentaje de azufre en la muestra.


mmol OH- = 2 * mg S/Pat S + mmol H+

40.0 * 0.1250 = 2 * mg S/32 + 22.0 * MClH

mmol HCl = V * MClH = 2 * mg Na2CO3/Pm Na2CO3 = 2 * 9.6/106 = 0.181 mmol HCl/ml

mg S = 16.3 mg

%S = 6.5 %

Problemas resueltos de Química analítica. PQA 2.45.

2.45. Para determinar el contenido en azufre de una muestra orgánica se aplicó el siguiente procedimiento: 0.7500 g de muestra se sometieron a combustión en corriente de oxígeno, formándose dióxido de azufre y algo de trióxido. Estos gases se recogieron sobre una disolución diluída de peróxido de hidrógeno, transformándose en H2SO4. Si en la valoración de este ácido se consumieron 5.3 ml de una disolución de NaOH 0.0365 M, calcular el porcentaje de azufre en la muestra.

Reacciones del procedimiento:

S + O2 --> SO2 (SO3)
SO2 (SO3) + H2O2 --> H2SO4

Reacciones de valoración:

H2SO4 + 2OH- --> SO4(2-) + 2 H2O

Reacción estequiométrica:

S <> SO2 <> SO3 <> H2SO4

mmol OH- = 2 * mg S/Pat S
5.3 * 0.0365 = 2 * mg S/32
mg S = 3.1 mg

% S = 0.0031 * 100/0.7500 = 0.41%

Problemas resueltos de Química analítica. PQA 2.44.

2.44. Para determinar la pureza de un material constituído por óxido de calcio e impurezas inertes, se procedió a la disolución de 0.3250 g de muestra en 100 ml de á.clorhídrico (en exceso), determinándose dicho exceso por valoración con una disolución de NaOH 0.275 M, de la que se gastaron 12.5 ml. Si las concentraciones del ácido y de la base son tales que 2.0 ml de HCl <> 1.0 ml NaOH, calcular el porcentaje de CaO y Ca en la muestra.

La Reacción del ácido sobre el óxido de calcio es

CaO + 2 H+ --> Ca2+ + H2O
mmol HCl = 2* mmol CaO + mmol OH-

100 * MClH = 2 * mg CaO/56.1 + 12.5 * 0.275
2 * MClH = 1 * 0.275
MCLH = 0.1375 mol/l
mg CaO = 289 mg

% CaO = 88.9 %

mg Ca = 289 * 40.1/56.1 = 207 mg

% Ca = 63.7

Problemas resueltos de Química analítica. PQA 2.43.

2.43. Se sabe que una muestra contiene exclusivamente óxidos de calcio y magnesio. Para proceder a su análisis se pesaron 0.2000 g, se disolvieron en 50.0 ml de á. clorhídrico 0.2500 M, y el exceso de ácido se valoró con 40.5 ml de NaOH. Si en la normalización de 25.0 ml de la disolución base se consumieron 13.5 ml de á. ftálico 0.1002 M, calcular los porcentajes de CaO y MgO en la muestra.

La reacción de valoración ajustada y la relación estequiométrica es:

H2Ph + 2 OH- --> Ph2- + 2 H2O

2 * mol H2Ph = mmol OH-

2 * 13.5 * 0.1002 = 25.0 * M

M = 0.1082 mol/l

La reacción de disolución de ambos óxidos en el ácido transcurre según:

MO + 2H+ --> M2+ + H2O
MO <> 2 H+ <> 2OH-

mmol H+ = 2* mmol CaO + 2 * mmol MgO + mmol OH-


Se cumple que mg CaO + mg MgO = 200 mg muestra y
sustituyendo datos, masas y pesos moleculares y despejando:

50.0 * 0.2500 = 2 * mg CaO/56.1 + 2 * mg MgO/40.3 + 40.5 * 0.1082

mg MgO = 131 mg y mg CaO = 69 mg

Problemas resueltos de Química analítica. PQA 2.42.

2.42. Se determina el N de una muestra de leche en polvo que pesa 3.000 g mediante el método de Kjeldahl. Para ello se hace destilar el amoniaco sobre 50.0 ml de una disolución de á. clorhídrico 0.1210 M, valorándose el exceso de ácido con otra disolución de NaOH 0.1540 M, de la que se gastaron 32.2 ml

Calcular a) Porcentaje de Nitrógeno en la muestra.
b) Si el factor de conversión de Nitrógeno en proteína es 6.38, ¿qué cantidad de proteínas contiene la masa de muestra analizada?.

a) Las transformaciones que tienen lugar son como las de 2.41, con la única diferencia de que se recoge el amoníaco destilado en ácido fuerte en exceso para valorar éste con sosa.

En la valoración por retroceso del exceso de ácido con sosa, tenemos:

mmol HCl = mmol NH3 + mmol NaOH

50.0 * 0.1210 = mg N/14 + 32.2 * 0.1540

mg N = 15.3 mg

% N = 0.0153 * 100/3.0000

b) % Proteínas en la leche

0.51 * 6.38 = 3.25%

En la muestra de 3.0000 g habrá pues:

g protTot = 0.0975 g

Problemas resueltos de Química analítica. PQA 2.41.

 

2.41. Un cereal contiene el 2.8% de proteínas. Calcular el peso máximo del mismo que debe tomarse para que, una vez tratado por el método de Kjeldahl, y recogido el amoníaco formado sobre á. bórico, se gasten no más de 50.0 ml de á. clorhídrico 0.0320 M en la valoración. (Dato: factor N en proteína = 5.70).

Las reacciones que tienen lugar son:

a) Digestión: Nprot -- H+ --> NH4+

b) Destilación: NH4+ -- OH- --> NH3

NH3 + HBO2 --> NH4+ + BO2-

c) Valoración: H2 + BO2- --> HBO2

Y las relaciones estequiométricas:

H+ <> BO2- <> NH3 <> N

por lo que deducimos:

mmol HCl = mg N/Pat N

Como sólo pueden ser consumidos un máximo de 50.0 ml de HCl, que suponen en mmoles 50.0 * 0.0320 = 1.60 mmoles HCl

equivalentes 1.60 * 14 = 22.4 mg N ó

22.4 * 5.70 = 128 mg de Proteína

Por tanto la masa de muestra necesaria será como máximo de

m = 0.128/0.028 = 4.571 g

Problemas resueltos de Química analítica. PQA 2.39.

 

2.39. Se sabe que cierta disolución contiene una combinación de dos de las siguientes sustancias: HCl, H3PO4, NaH2PO4 y Na2HPO4. La valoración de una alícuota con NaOH 0.450 M usando fenolftleína requiere 28.0 ml y otra con naranja de metilo, para el mismo volumen de muestra, requiere 16.4 ml de NaOH. ¿Cuántos mg de qué componentes están presentes en la alícuota valorada?


Las mezclas binarias posibles son:

a) HCl + H3PO4

b) H3PO4 + NaH2PO4

c) NaNH2PO4 + Na2HPO4

De éstas queda descartada la c) ya que al valorar con sosa sólo podría usarse la fenolftaleína, pues el naranja ya estaría virado.

Calculamos el gasto de sosa en la 1ª alícuota para mezcla b)

V sosa = 2 * V1 + V2

Gasto V1 para las reacciones

H3PO4 + OH- --> H2PO4- + H2O y

H2PO4- --> HPO4(2-) + H2O

y V2 para (H2PO4-ini) + OH- --> HPO4(2-) + H2O


Calculamos el gasto de sosa en la 2ª alícuota

Vsosa = V1

Reacción:

H3PO4 + OH- --> H2PO4- + H2O

Como V1 = 16.4 ml, el volumen consumido hasta viraje de la fenolftleína debería ser mayor que 28.0 ml. Por tanto, no puede tratarse de esta mezcla b).

En el caso de la mezcla a) Para la 1ª alícuota el gasto de sosa sería Vsosa = V1 + 2 * V2

Para las reacciones

V1 en H+ + OH- --> H2O

V2 para H3PO4 + OH- --> H2PO4- + H2O

y V2 para H2PO4- + OH- --> HPO4(2-) + H2O

Para la 2ª alícuota el gasto de sosa sería Vsosa = V1 + V2

Para las reacciones

V1 en H+ + OH- --> H2O

V2 para H3PO4 + OH- --> H2PO4- + H2O

Esta mezcla se ajusta a los datos del problema, ya que se tendría:

V1 + 2 * V2 = 28.0 ml y V1 + V2 = 16.4 ml

De dónde deducimos V1 = 4.8 ml y V2 = 11.6 ml

Para calcular las concentraciones se plantea en la 2ª valoración:

mmol NaOH = mmol HCl + mmol H3PO4

(V1 + V2) * Msosa = mg HCl/Pm HCl + mg H3PO4/Pm H3PO4

16.4 * 0.450 = mg HCl/36.5 + mg H3PO4/98

Además V2 * Msosa = mg H3PO4/Pm H3PO4

11.6 * 0.450 = mg H3PO4/98

De dónde deducimos mg H3PO4 = 512 mg y mg HCl = 79 mg

Problemas resueltos de Química analítica. PQA 2.38.

2.38. Se analiza una muestra que contiene carbonato y bicarbonato sódicos e impurezas inertes. Para ello se pesan 0.4817 g, se disuelven en agua y se valora con HCl 0.1176 M, consumiéndose 12.3 ml hasta viraje de la fenolftaleína.

Otra muestra idéntica se disuelve en exceso de HCl, se calienta, y se elimina el CO2 por burbujeo sobre 25.0 ml de NaOH 0.1863 M. La disolución resultante se valora con HCl 0.1176 M, consumiéndose 14.6 ml hasta el viraje de la fenolftaleína. Calcular los porcentajes de las dos sales en la muestra.

En la primera valoración:

CO3(2-) + H+ -->HCO3-
mmol H+ = mmol CO3(2-) = mg Na2CO3/Pm Na2CO3

12.3 * 0.1176 = mg Na2CO3/106

mg Na2CO3 = 153 mg

% Na2CO3 = 153 * 100/481.7 = 31.8%

Las reacciones de transformación a CO2 son:

CO3(2-) + 2H+ --> CO2 + H2O
HCO3- + H+ -->CO2 + H2O

A partir del carbonato sódico se forman:

153/106 = 1.44 mmol CO2

Y el total de CO2 será:

mmol CO2 = 1.44 + mg NHCO3/84

Al reaccionar con NaOH:

CO2 + 2OH- --> CO3 + H2O

(mmol OH-tot) = 2 * mmol CO2 + (mmol OH exceso)

Al valorar con HCl se neutraliza el exceso de sosa y el carbonato formado:

mmol H+ = mmol OH exceso + mmol CO3(2-)

y teniendo en cuenta que mmol CO3(2-) =mmol CO2

mmol H+ = (mmol OH-tot) - mmol CO2 = (mmol OH-tot) - 1.44 - mg NaHCO3/84

mg NaHCO3 = 126 mg

% NaHCO3 = 1216 * 100/481.7 = 26.2%

Problemas resueltos de Química analítica. PQA 2.37.

 

2.37. Una muestra de 1.000 g, que se sospecha que contenga NaOH, Na2CO3 y/o NaHCO3 aislados o mezclados, se disuelve y se valora con HCl 0.500 M. Con fenolftaleína como indicador (pKi = 9.4) la disolución se vuelve incolora después de la adición de 32.0 ml de ácido. Luego se añade naranja de metilo (pKi = 3.4) y se requieren 7.5 ml más de valorante hasta el punto final del indicador. ¿Cuál es la composición de la mezcla?

Si la mezcla contuviera sólo sosa o sólo carbonato, se gastaría el mismo volumen de valorante hasta el viraje con cualquiera de los indicadores. Para el bicarbonato sólo se requiriría de un indicador. Para una mezcla de carbonato-bicarbonato se requiriría mayor volumen de ácido para alcanzar el viraje del naranja de metilo. Por tanto, la única posibilidad es que se trate de una mezcla de NaOH-Na2CO3.

En la primera parte de la valoración:

OH+ + H+ -->H2O y CO3(2-) + H+ --> HCO3-

Por tnto:

mmol H+ = mmol OH- + mmol CO3(2-)

V * M = mg NaOH/Pm NaOH + mg Na2CO3/Pm Na2CO3

32.0 * 0.500 = mg NaOH/40 + mg Na2CO3/106

En la segunda prte de la valoración:

H+ +HCO3- --> H2CO3

mmol H+ = mmol HCO3 = mmol CO3(2-)

V * M = mg Na2CO3/Pm Na2CO3

7.5 * 0.500 = mg Na2CO3/106

mg Na2CO3 = 398 mg

% Na2CO3 = 0.398 * 100/1.000 = 39.8%

Sustituyendo:

mg mg NaOH = 492 mg

% NaOH = 0.490 * 100/1.000 = 49.0%

Problemas resueltos de Química analítica. PQA 2.25.


2.25. Se valoran 50.0 ml de NH3 0.125 M con HCl 0.100 M. Calcular el pH en los puntos de la curva de valoración que corresponden a la adición de 0; 25.0; 50.0; 62.5; 75.0; y 90.0 ml.

La disolución a valorar contiene 50.0 ml * 0.125 M = 6.25 mmol de NH3

La reacción de valoración es:

NH3 + H+ --> NH4+

Inicialmente, para V = 0.0 ml, el pH de la disolución viene dado por la hidrólisis básica del amoníaco, con
pKb = 14-9.2 = 4.8

[OH] = raiz(0.125 * 10^-4.8) = 1.4 * 10^-3 M y por tanto pH = 11.1

Para V = 25. ml

moles HCl añadido = 25.0 * 0.100 = 2.50 mmol, equivalente al NH4+ formado. Volumen final: f = 50 + 25 = 75 ml. NH3 sin valorar = 6.25 - 2.50 = 3.75 mmol. La disolución contiene una mezcla reguladora NH4+/NH3 cuyo pH vendrá dado por:

pH = 9.2 + log(3.75/75)/(2.50/75) = 9.4

Para V = 50 ml

HCl añadidos = 5.00 mmol equivalentes a los mmoles de NH4+ formados

NH3 sin valorar: 6.25 - 5.00 = 1.25 mmol en un volumen
vf = 50 + 50 = 100 ml. Por tanto:

pH = 9.2 + log(1.25/100)/(5.00/100) = 8.6

Para V = 62.5 ml

HCl añadidos = 6.25 mmoles y se ha neutralizado todo el NH3, formándose una cantidad equivalente de NH4+ en un volumen Vf = 50 + 62.5 = 112.5 ml. Estamos pues en el punto de equivalencia, en el que el pH viene dado por la disociación ácida del NH4+ a un concentración
Ci = 6.25/112.5 = 0.056 M

[H+] = raiz(10^9.2 * 0.056) = 5.9 * 10^-6 M y por tanto
pH = 5.2

Para V = 75.0 ml

HCl añadidos = 7.50 mmoles, formándose 6.25 mmol de NH4+ y quedando un exceso de 7.50 - 6.25 = 1.25 mmol de H+ en un volumen Vf = 75 + 50 = 125.0 ml. El pH viene dado por la concentración de protones en exceso:

[H+] = 1.25/125 = 0.01 M y por tanto pH = 2.0

Para V = 90.0 ml

HCl añadidos = 9.00 mmoles, formándose un exceso de H+ de 9.00 - 6.25 = 2.75 mmol en un volumen Vf = 90 + 50 = 140.0 ml.

[H+] = -log (2.75/140) = 1.7

Problemas resueltos de Química analítica. PQA 2.20.


2.20. Se disuelven 520.0 mg de arseniato sódico en agua y la disolución se lleva a pH 7.0. Calcular qué volumen de sosa 1M será necesario añadir para preparar, a partir de la anterior, 250 ml de una disolución de pH 11.5.

Teniendo en cuenta las constantes de disociación del ácido arsénico pK1 = 2.2; pK2 = 7.0; pK3 = 11.5, se deduce que la disolución inicial a pH 7.0, contiene una mezcla equimolar de las especies H2AsO4- y HsO4(2-). Para alcanzar el pH final 11.5, deberá formarse una nueva mezcla equimolar de las especies HAsO4(2-) y AsO4(3-), para lo que será necesario añadir una cantidad de NaOH equivalente a la de las especies neutralizadas.

Se calcula primero la cantidad de arsenito sódico en mmoles, con el peso molecular de la sal Na3AsO4, Pm = 207.9:
520.0/207.9 = 2.50 mmol Na3AsO4

A pH 7.0, la disolución contendrá 1.25 mmol de H2AsO4- y 1.25 mmol de HAsO4(2-). Para llegar a formar una disolución que contenga 1.25 mmol de HAsO4(2-) y 1.25 mmol de AsO4(3-). será necesario neutralizar los dos protones del H2AsO4-, según la reacción:

H2AsO4- + 2OH- --> AsO4(3-) + 2H2O

por lo que:

mmol NaOH = 2 * mmol H2AsO4- = 2 * 1.25 = 2.50 mmol

Como se dispone de una disolución de NaOH 1M, habrá que añadir:

V = 2.50 mmol/(1 mmol/l) = 2.50 ml

Después de añadir este volumen, la disolución se llevará a 250 ml, enrasando con agua.

Problemas resueltos de Química analítica. PQA 2.19.

2.19. a) ¿Qué peso de etilendiamina (NH2CH2CH2NH2), se deberá añadir a 200 mmol de HCl para obtener un litro de disolución reguladora de pH 10.5?
b) ¿Cuantos moles de ácido o de base admiten 100 ml de esta disolución para que su pH varíe como máximo +/- 0.1 unidades?

a) Las constantes de disociación ácida del sistema de la etilendiamina (a partir de ahora En) son:

H2En2+ <--> HEn+ + H+ pK1 = 7.1 y
HEn+ <--> En + H+ pK2 = 9.9

Por lo que a pH = 10.5 se tendrá el regulador HEn+/En, cumpliéndose:

10.5 = 9.9 + log [En]/[HEn+] de donde:

0.6 = log [En]/[HEn+]
10^0.6 = [En]/[HEn+]
[En]] = 4.0 * [HEn+]

Al añadir En a 200 mol de HCl se producirá la reacción:

H+ + En --> HEn+

Primero se neutralizarán los 200 mmol de HCl, formándose 200 mmol de HEn+. Si se sigue añadiendo En a la disolución, se obtendrá la mezcla deseada. La relación de concentraciones calculada anteriormente para las dos especies de la En puede expresarse como moles, ya que el volumen de la disolución final es el mismo. Entonces se cumplirá:

mmol En = 4 * mmol HEn+
mmol En = 4 * 200 = 800
mmol En tot = 200 + 800 = 1000

Será preciso añadir pues 1 mol de En, diluyendo posteriormente a un litro de disolución. Ya que el peso molecular es 60.0, la masa de En es de 60.0 g.

b) Al añadir mínimas cantidades de una base se producirá un ligero aumento del pH. Para amortiguarla +/- 0.1 unidades de pH, la disolución final deberá mantenerse en pH = 10.6, cumpliéndose:

pH = 10.6 = 9.9 + log [En]/[HEn+]
0.7 = log [En]/[HEn+]
10^7 = [En]/[HEn+]
[En] 5.0 * [HEn+]

La concentración total de En es Ctotal = [HEn+] + [En] = 1M
Resolviendo el sistema obtenemos:

[HEn+] = 0.17 M
[En] = 0.83

Respecto de la disolución inicial, ésta contiene 0.03 moles más de especie disociada y formados a expensas de la base añadida, por tanto la cantidad de base que admite dicha disolución será de 30 mmol/litro, es decir 3.0 mmol /100 ml.

Al añadir una mínima cantidad de ácido esta disolución se producirá una ligera disminución del pH. Para que sea como máximo de -0.1 unidad, la disolución deberá llegar a pH = 10.4, cumpliéndose:

pH = 10.4 = 9.9 + log [En]/[HEn+]
0.5 = log [En]/[HEn+]

10^5 = [En]/[HEn+]
[En] = 3.2 * [HEn+]

Como la concentración total de En es

Ctot = [HEn+] + [En] = 1M

Resolviendo el sistema, se obtiene:


[HEn+] = 0.24 y [En] = 0.76 M

Respecto a la disolución inicial, ésta contiene 0.04 moles más de especie protonada. Como éstos se han formado a expensas del ácido añadido, la cantidad de ácido que admite dicha disolución será de 40 mmol/litro, es decir 4.0 mmol /100 ml.

 

[a Grupo 2][a Grupo 3][a Grupo 4]
[a Análisis Cuantitativo]


Con mi agradecimiento a los autores del libro del mismo título
editado por Edit. Síntesis: P. Yañez-Sedeño, J.M. Pingarrón y F.J.M de Villena


Contacta con el Webmaster email  bobquim. 
Las sugerencias y los fallos, podéis transmitirlos a esta dirección de correo
 Química Práctica
    Ir a Espejo 2
Visitas a este sitio de Química Práctica
   Espacio Espejo 1
   Espacio Espejo 2

Copyright @ bobquim Feb 2004